Distance-Transitive Graphs of Valency 5, 6 and 7
نویسندگان
چکیده
منابع مشابه
Finite two-distance-transitive graphs of valency 6
A non-complete graph Γ is said to be (G, 2)-distance-transitive if, for i = 1, 2 and for any two vertex pairs (u1, v1) and (u2, v2) with dΓ(u1, v1) = dΓ(u2, v2) = i, there exists g ∈ G such that (u1, v1) = (u2, v2). This paper classifies the family of (G, 2)-distancetransitive graphs of valency 6 which are not (G, 2)-arc-transitive.
متن کاملDistance-Regular Graphs of Valency 6 and a1 = 1
We give a complete classification of distance-regular graphs of valency 6 and a1 = 1.
متن کاملOn Distance-transitive Graphs
Cameron's proof of this result is based on Sims' Conjecture, which has only been shown to hold using the classification of finite simple groups. In the final section of [1], Cameron indicates how Theorem 1 might be proved in an elementary fashion using Macpherson's classification of infinite distance-transitive graphs of finite valency [4]. Corollary 1 below provides the missing portion of this...
متن کاملArc-transitive and s-regular Cayley graphs of valency 5 on Abelian groups
Let G be a finite group, and let 1G 6∈ S ⊆ G. A Cayley di-graph Γ = Cay(G,S) of G relative to S is a di-graph with a vertex set G such that, for x, y ∈ G, the pair (x, y) is an arc if and only if yx−1 ∈ S. Further, if S = S−1 := {s−1|s ∈ S}, then Γ is undirected. Γ is conected if and only if G = 〈s〉. A Cayley (di)graph Γ = Cay(G,S) is called normal if the right regular representation of G is a ...
متن کاملThe Distance-Regular Graphs of Valency Four
We show that each distance-regular graph of valency four has known parameters.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 1986
ISSN: 0195-6698
DOI: 10.1016/s0195-6698(86)80004-x